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Ridge, Singapore 051 1. Republic of Singapore 
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Abstract. Whilst m y  solutions have been found for the quantum Yang-Bater equation 
(QYBE), there are fewer known solutions available for ih  higher dimensional generalizations: 
Zamolodchikov’s tetrahedron equation (m) and Frenkel and Moore’s simplex equation (ME). 
In this paper, we present families of solutions to the FME which may help us to understand more 
about higher dimensional generalization of the QYBE 

1. Introduction 

The quantum Yang-Baxter equation (QYBE) plays a pivotal role in the study of two- 
dimensional integrable models, quantum groups, conformal field theory and the study of 
link polynomials in knot theory. A systematic study of the solutions of the QYBE shows 
that there are an infinite number of two-dimensional exactly solvable models in classical 
statistical mechanics [I, 21. 

Using a computer algebra method, Hietarinta [3,4] has obtained the complete 
classification of all two-state solutions of the QYBE. He has also extended his work in search 
of three-state solutions of the constant YBE [5] by studying all upper triangular ansatze. 

Higher dimensional generalization of the QYBE is possible. By considering the scattering 
amplitudes of straight strings in 2 + 1 dimensions, Zamolodchikov [6,7] derives a three- 
dimensional equivalent of QYBE, commonly called the tetrahedron equation (ZTB): 

R I Z ~ ( @ L .  6, %)R145(@i .  04, @5)Rz46(@z. 04, @6)R356(@3,@5,@6) 

where R123 = R 8 1 etc and R E End(V @ V @ V) for some vector space V .  In the 
same paper, he also ingeniously provided a non-trivial spectral-dependent two-state solution. 
Baxter [8] subsequently proved that the solution conjectured in Zamolodchikov’s paper 
satisfies the tetrahedron equation. The tetrahedron equation is by no means simple. Even 
in the two-state case, there are 214 consistency equations with 26 variables. An N-state 
generalization of the tetrahedron solution has also been found using a free-fermion model 
on the three-dimensional lattice [9,10]. 

By 
investigating the symmetry inherent in QYBE, Frenkel and Moore [Il l  suggested another 
possible generalization (FME): 

’: 

= R356(@3.@51 ~6)~z46(@~.~4~@6)~14~(81,~4.@5)Ri23(@1. e2,@3) (1) 

The tetrahedron equation is not the only higher dimensional generalization. 

R m R 1 2 4 R 1 3 4 R m  = Rz34R134RixRtz  (2) 
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where R I B  = R @ E etc and R E End(V 8 V 8 V) for some vector space V. While 
much work [9,10,12-161 has been done to relate Zamolodchikov's tetrahedron equation to 
three-dimensional lattice models, less effort 117,181 has so far been directed at the Frenkel 
and Moore generalization. 

In section 2, we describe some known symmetries associated with FME, and review 
other works done on FME. We also show that, unlike ZTE, a cross-diagonal ansatz always 
satisfies two-state FME. In section 3, we briefly describe the technique in our work and then 
present our results in section 4. 
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2. Frenkel-Moore simplex equation 

2.1. General symmetries 

There are some significant differences between Zamolodchikov's tetrahedron equation and 
Frenkel and Moore's simplex equation. Essentially, the underlying vector spaces on which 
the operator R acts differ. Further, the operator R in Zamolodchikov's tetrahedron equation 
seems to be local whilst the operator R in Frenkel and Moore's version possesses a global 
labelling scheme [ I l ,  191. 

By choosing an appropriate basis for V, Frenkel and Moore's equation becomes 

(3) 

The equation does not possess a spectral parameter but it is invariant under a similarity 

(4) 
for some non-singular matrix Q E End(V). It is also invariant under permutation of the 
indices, namely 

h h i 3 ~ ~ + 5 4 ~ p d ~  Rfsh - p?i~Ri+Rhi%h Rrfs 
RGbc z1t2d uiZc6 isi7ir - bcd aid, iaitis z7i8is 

where repeated indices are summed over. 

transformation [4,17] similar to the QYBE: 

R + K ( Q  @ Q @ Q)R(Q-' 0 Q-' @ Q-'1 

(54 R Z  -+ R(. t+r) mod d U+r) mod d (kfr) mod d 

RZ -+ REn (5b) 

(I+rl mad d (m+r) mod d (n+r) mod d 

R:? -+ R$ (5d 
where r = 1,2,3,. . . , d - 1, and dim(V) = d. This is known as discrete symmetry [4]. 

The symmetry transformations (5b) and (54 imply the symmetry transformation: 

(6) 
Indeed, if we consider all possible transformations involving permutation of the indices 
(i, j ,  k ,  I ,  m, n), (5b) and (5c) are the only ones that will allow the FME to remain invariant. 
In this paper, we only consider the case when dim( V )  = 2. 

2.2. Other works on FME 

By considering total symmetric ansatz, namely, R-matrices in which 

the authors of [17] have successfully listed all totally symmetric solutions of ME. They 
have found five independent solutions after eliminating those solutions which are related to 
each other under symmetry transformations. 

Zheng and Zhang [18] have also constructed some beautiful solutions of FME. They 
considered an ansatz of the form ( X  YO Z),  where X and Z are solutions of QYBE 
related to the superalgebra, the Temperly-Lieb algebra and the Birman-Wend algebra. 

kji R$' + Rnml. 

R!? y k  = Rm" J I X  = R!"m ckj =~R;;' = R!$ = R$" I I  (7) 



Two-sate spectralgree solutions of the Frenkel-Moore simplex equation6879 

2.3. Cross-diagonal ansatz 

Any diagonal ansatz, which is just an R-matrix with only diagonal entries, will satisfy 
a simplex equation, be it ZTE or FME. However, the statement is not true if we consider 
cross-diagonal R-matrices. A cross-diagonal R-matrix is one in which the only non-zero 

. Whilst this ansatz does not necessarily satisfy elements are Riii, 
the teh'ahedron equation unless certain conditions hold, it will always satisfy the two-state 
Fhm. 

To see this fact, we simply consider RCY # 0 provided i =.,C, j = V, k = 3, where 
p + p = l(mod 2) ,  p being the complement of p. Substituting into FME, we see that the 
only non-zero terms on the left- and right-hand side of the equation are 

(i+l)md 2 (j+l)mod 2 (k+l)mod 2 

In contrast, if we substitute this form of the R-matrix into the ZTE, the left- and right-hand 
side of the equation do not necessarily cancel, and we require the terms 

to be zero. One such possibility corresponds to equation (13) in Hietarinta's paper [4], 
which is 

where a ,  b, c and d are some arbitrary parameters with all other entries of the R-matrix 
being zero. 

3. Technique 

In this paper, most of the algebraic computations have been done using the computer 
algebra, MATHEMATICA [ZO]. The method used is similar to that employed by Hietarinta 
in his analysis of the QYBE [3] .  Using a short program, we churn out all 256 equations 
from the FME, using a suitably chosen ansatz. We then analyse the 256 equations for the 
unknowns. These equations are generally trivial, though in the simplest case of a diagonal 
ansatz with one off-diagonal element, there can be as many as seven different 'quartic' 
equations with nine unknowns. 

The ansatz that we choose initially are basically diagonal ones or cross-diagonal ones 
with an increasing number of off-diagonal elements. By systematically increasing the 
number of such off-diagonal elements, we hope to push the list as far as possible. We 
only manage to exhaust all listing up till two off-diagonal elements. The task gets very 
involved as the number of off-diagonal elements increases to three. in the case of two 
off-diagonal elements, there are still 1540 cases, although this number can be substantially 
reduced by looking at the discrete symmetries mentioned in section 2.1. In the case of three 
off-elements, for instance, there are altogether 27720 possible cases which can be cut down 
easily by the symmetries in the indices of the equations. 

4. Results 

Solutions to the FME are not always independent. Due to invariance under the symmetry 
transformations, many solutions are related to each other and the number of different 
solutions can largely be reduced. 
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4.1. Solutions with only one non-zero off-diagonal element 

There are 56 possible off-diagonal positions for the non-zero elements. However, if we 
consider all possible discrete symmetries, we need to consider only 12 different positions 
for the non-zero off-diagonal element. A convenient choice of these positions is shown in 
the array below: 

L C Kwek et a1 

. .  S5 S6 s7 s8 dz . 

. . . . . d3 . . 

. . . . d4 . . . 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

In addition, it is found that the cases corresponding to the non-zero element at the 
following positions m, SS and d3 respectively do not yield non-singular solutions. Thus, we 
effectively have a total of nine different positions to consider for the non-zero-element. 

To present our solutions more compactly, we shall write the solutions in the form 

(12) 121 R211 R212 Rul R222 wK3 Rfl:, RI,,, 122. 2111 212, 221. 2221 

where R@‘ denotes the only non-zero off-diagonal element. Further, without any loss of 
generality, we shall set R l f i  to unity. 

The solutions are as follows. 
(i) SI: RI:; = k # 0. 

a 

There are also three other solutions in which complex entries occur: 

2 m2 1, -m, -La ,  -U , -; &a, b} 
a 

1,a . fa  2 1  ,&-,-a, -1, 
a3 
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1 i 
a3 b’ 

l,a,&u’,&-, -ia, - l , F - , F b  

(v) ss: R::: = k # 0. This is a more complicated case than the rest and probably 

(22) 

deserves more discussion. If we now write the solutions in the form: 

R:::, R:;;, RI;:, R;;;, R:::. R;;!. R,,, 222. 1121 
the solution takes the form 

(1, a ,  b,  c, b, c, c, d ;  k )  ~ . (23) 

where a ,  b, c and k are not independent, but related to each other by the equations 

c2 =ab f ck (244 
(az - 1)b + k(u + b) = 0. ( 2 4 ~  

Suppose we allow b = c = 1 ,  we will get the solution: 

( 1 ,  U ,  1.1,  1, 1 ,  d ;  1 - U ) .  (25) 
Other possibilities exist. If we allow a = 1 and a = 6,  we easily get 

l , I , - l , c , - l , c , c , d ; -  
C 

and 
C’ - b2 

b,  6, c. b, c,  c, d ;  - 
C 

respectively. 
(vi) sg: Rl;; = k # 0. 

(1 ,1 ,1 ,w ,w ,a ,  1.m1 (28) 

where o3 = 1 ,  o # 1. 

compactly as 
(vii) d,: R::: = k # 0. There are 18 solutions but these solutions can be written 

(1, a, Ao‘a, o, a, fo‘, w ,  o’a) (2% 
where o3 = U‘ = ~ - 1  and A’ = f l .  

(viii) 4: R;;; = k # 0. 
( l , a , f a , l , a , ~ l , l . l } . ~  (30) 

(ix) d4: R:; = k # 0. 

(1 ,  a, ha, 1, a ,  f l ,  1.1) 
This completes the list of solutions possible under the diagonal ansatz with one non-zero 
off-diagonal element. 

4.2. Solutions with two off-diagonal elements 

There are (T), i.e. 1540 possible positions. Again, most solutions are related to each 
other by the similarity transformation and discrete symmetries. In particular, there are~two 
interesting cases to consider: 

Case 1: The two non-zero elements are symmetrical about the diagonal. 
Case 2: The two elements are symmetrical about the cross diagonal. 
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4.2.1. Case 1. There are altogether four different types of non-singular solutions. They 
correspond, modulo the symmetry transformations, to the cases when Riif ,  R { f / ,  R!E, 
and R;!: and their respective entries by reflection about the diagonal of the R-matrix are 
non-zero, for example, when RiI: and Riii are non-zero off-diagonal elements, and so 
forth. 

L C Kwek et a1 

If we denote the diagonal entries of the solutions by 

we can present the solutions as follows. 
(i) When Rlf:, RI:; are not zero. There are three distinct sets of solutions: 

[I ,  - l , ~ , f a , b , & b , c , d )  (33) 

with R::: = (1 - a2) /k  and R::: = k ;  

with Rlf: = a / k  and Rl:: = k.  
(ii) When R:::, R{:i are not zero. There are two sets of solutions. They take the form 

1 , & 2 , l , a , 1 2 ,  - -a ,  b I 
with R::: = l / k  or -3/k and Rii: = ~ k ,  and 

, b7 c )  l , a +  1 , a ,  b , a +  1, - (a + 
b (37) 

with R!:: = a j k  and Riii = k. 
(iii) When R/:;, R;:: are not zero. The solutions are 

(1, a. b, 1 - a ,  1, b, 1,  cl (38) 

with Rf:: = a(1 - a ) / k  and Rlii = k, and 

4 z m - b  -4b+2b2&%;- 
,b ,  1 , c  2 4 1 ,a ,b ,  

with RI;: = a(l - a ) / k  and R::: = k. 
(iv) When R:::, Ri/; are not zero. There is one solution 

with R::; = ac/k and Rjt; = k .  
These solutions seem to possess some regular patterns. If we label the vertices of a cube 

by (l l l) ,( l lZ},(lZl),  and so forth as shown in figure 1, we make an interesting observation. 
Suppose we consider R@ as the non-zero element and look at the vertices on the cube 
corresponding to the indices [ijk) and (Imn), we see that a non-singular solution exists 
only for cases in which the vertices are connected by an edge of the cube. 
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, 

Figure 1. Labelling of cube 

4.2.2. Case 2. Non-singular solutions exist for the cases when R!::, R:!:, R& R:!;. 
RI,,, RIn 121 and R:;: and their respective entries by reflection in the cross-diagonal of the 
R-matrix are not zero. These solutions seem less interesting than the previous cases. The 
off-diagonal elements are, in general, independent of the elements along the diagonal, except 
for case of solution (43). 

o up to symmetries, there are seven basic solutions. Using the notations in the previous 
subsection 4.2.1, the solutions are: 

, 0) 
{a, b,a, b,a,b,a, 6 )  (41) 

with Ri?? = c and Rz:: = d and a2 = bZ 
(ii) 

la, b. a. b,  6, a, b, a )  

with R:!: = c and R:;: = ~ d  and a* = bZ 
(iii) 

{a, b, b, -b, b,  -b, -b, a )  

with RI:; = RE$ = (a2 - b2)/2a; 
(iv) 

h a ,  a, -a, -a, a, a, a1 

with R::: = b and Rz2' 122 - - c; 
(V) 

(a, -a, a, a ,  6, b, -b, b) 

(43) 

(44) 

(45) 
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4.2.3. Other cases. Besides the cases already mentioned, there are many solutions which 
are not related to the above solutions by any symmetry transformations mentioned in section 
2.1. For example, in the case in which Rji: is not zero and one other element systematically 
chosen from the other 27 possible positions in the upper triangle of the R-matrix is set as 
the non-zero element. In this case, we find solutions for cases in which 

L C Kwek et ai 

(i) Rf’ f 0 two possible solutions, 

(iii) RI;: # 0 four possible solutions, 
(iv) RZI: # 0 four possible solutions, 
(v) RE! f 0: eight possible solutions. 
A typical solution from this list appears as 

(ii) R,,, 112 # 0. . two possible solutions, 

a y 0 0 0 0  
0 - a  0 0 0 0 
O O h a O O O  
0 0 0 p a 0  0 

R = [  0 0 0 0 0 0 0 - b  0 0 - b  c 

0 0 0 0 0 0  
0 0  0 0 0 0  

where A, p = & I .  

0 0  
0 0  
0 0  
0 0  
0 0  
0 0  

hb 0 
0 fib 

4.3. Cross-diagonal ansatz with one or more non-zero eiements 

In comparison with the number of solutions which we can generate by looking at diagonal 
R-matrices with one or more off-diagonal elements, there are fewer solutions obtained 
from R-matrices with non-zero cross-diagonal elements and one or more elements off the 
cross-diagonal. By cross-diagonal ansatz, we refer to an R-matrix in which the elements 

are not zero. We have shown earlier (see subsection 2.3) that such R-matrix will satisfy the 
FME when the parameters take on any value. 

It is interesting to note that such an ansatz with one non-zero off cross-diagonal element 
does not yield any non-singular solution. Solutions exist only if the number of non-zero 
o f f  cross-diagonal elements exceeds unity. We shall describe one such class of solutions: 
cross-diagonal ansatz with two non-zero elements placed symmetrically about the cross- 
diagonal. 

4.3.1. Cross-diagonal ansatz with fwo non-zero elements. 
elements as 

We shall list the cross-diagonal 

For such an ansatz, we find that solutions exist essentially for two cases: 
(i) Rf:: = R i E  = k The cross-diagonal elements are 

(ii) R::f = R:;: = k.  The cross-diagonal elements are 

I bc bc 
La, Ab, ~ L C ,  p-, C ,  --,a, b . 

a n  
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b b O O O O O O  
0 0 x 0 0 0 0 0  
0 0 0 x 0 0 0 0  

o o o o o y o o  
o o o o o o c c  

4.4. Other solutions 

As we increase the number of off-diagonal elements, we find increasing complexity in 
solving the 256 nonlinear ‘quartic’ equations. The number of over-determined consistency 
equations increases more rapidly than the increase in the number of unknowns. A typical 
result in which the four off-diagonal elements are symmetrical about both the diagonals is 

R =  

0 0 1 0  0 - p  p 0 
0 0 0 1 pzq-’  0 ~ 0 p 

(54) 0 0 0 0  1 0 0 0 ’  
0 0 0 0  0 1 0 0  
0 0 0 0  0 0 1 0  

where x2 = (U + b)z and yz  = (c + d)’. 
One can easily check that Hietarinta’s constant upper triangular solution o f m  141, 

(55) 

5. Conclusion 

As noted in Frenkel and Moore’s original paper, the FME may be a good strategy to 
investigate Zamolodchikov’s tetrahedron equation. The tetrahedron equation has so far 
admitted only one well known solution, which is the original spectral-dependent solution 
proposed by Zamolodchikov himself. On the other hand, there is a wealth of solutions, albeit 
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spectral free, which we can generate from Frenkel and Moore's equation. By systematically 
increasing the number of unknowns in the R-mafxix, we may be able to discover some 
symmetries which are inherent in both the tetrahedron equation and FME. Recently, Hu [21] 
has attempted to relate the FME to braid groups. More recently, Li and Hu [22] has shown 
that a given representation of the braid group induces a special kind of  solution for the Pm. 
They have also invoked symmetry transformations (5b) and (5c) in their solution. It would 
therefore seem that a systematic understanding of the FME will help us gain greater insights 
into higher dimensional generalization of the QYBE. 
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